Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 331: 121871, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38388038

RESUMO

The administration of Mg ions is advantageous in pathological scenarios such as pre-enclampsia and forms of neuroinflammation (e.g. stroke or injury); yet, few systems exist for their sustained delivery. Here, we present the (static light scattering and diffusing-wave spectroscopy) characterization of magnesium alginate (MgAlg) as a potentially injectable vehicle ifor the delivery of Mg. Differently from other divalent cations, Mg does not readily induce gelation: it acts within MgAlg coils, making them more rigid and less prone to entangle. As a result, below a threshold concentration (notionally below 0.5 % wt.) MgAlg are inherently less viscous than those of sodium alginate (NaAlg), which is a major advantage for injectables; at higher concentrations, however, (stable, Mg-based) aggregation starts occurring. Importantly, Mg can then be released e.g. in artificial cerebrospinal fluid, via a slow (hours) process of ion exchange. Finally, we here show that MgAlg protects rat neural stem cells from the consequence of an oxidative insult (100 µM H2O2), an effect that we can only ascribe to the sustained liberation of Mg ions, since it was not shown by NaAlg, MgSO4 or the NaAlg/MgSO4 combination. Our results therefore indicate that MgAlg is a promising vehicle for Mg delivery under pathological (inflammatory) conditions.


Assuntos
Peróxido de Hidrogênio , Magnésio , Ratos , Animais , Viscosidade , Cátions Bivalentes/química , Alginatos/química
2.
iScience ; 24(12): 103438, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34901791

RESUMO

Brain organoids are in vitro three-dimensional (3D) self-organized neural structures, which can enable disease modeling and drug screening. However, their use for standardized large-scale drug screening studies is limited by their high batch-to-batch variability, long differentiation time (10-20 weeks), and high production costs. This is particularly relevant when brain organoids are obtained from human induced pluripotent stem cells (iPSCs). Here, we developed, for the first time, a highly standardized, reproducible, and fast (5 weeks) murine brain organoid model starting from embryonic neural stem cells. We obtained brain organoids, which progressively differentiated and self-organized into 3D networks of functional neurons with dorsal forebrain phenotype. Furthermore, by adding the morphogen WNT3a, we generated brain organoids with specific hippocampal region identity. Overall, our results showed the establishment of a fast, robust and reproducible murine 3D in vitro brain model that may represent a useful tool for high-throughput drug screening and disease modeling.

3.
Micromachines (Basel) ; 12(2)2021 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-33498905

RESUMO

Brain-on-Chip (BoC) biotechnology is emerging as a promising tool for biomedical and pharmaceutical research applied to the neurosciences. At the convergence between lab-on-chip and cell biology, BoC couples in vitro three-dimensional brain-like systems to an engineered microfluidics platform designed to provide an in vivo-like extrinsic microenvironment with the aim of replicating tissue- or organ-level physiological functions. BoC therefore offers the advantage of an in vitro reproduction of brain structures that is more faithful to the native correlate than what is obtained with conventional cell culture techniques. As brain function ultimately results in the generation of electrical signals, electrophysiology techniques are paramount for studying brain activity in health and disease. However, as BoC is still in its infancy, the availability of combined BoC-electrophysiology platforms is still limited. Here, we summarize the available biological substrates for BoC, starting with a historical perspective. We then describe the available tools enabling BoC electrophysiology studies, detailing their fabrication process and technical features, along with their advantages and limitations. We discuss the current and future applications of BoC electrophysiology, also expanding to complementary approaches. We conclude with an evaluation of the potential translational applications and prospective technology developments.

4.
Biomed Opt Express ; 11(11): 6293-6310, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33282491

RESUMO

Dynamic biological systems present challenges to existing three-dimensional (3D) optical microscopes because of their continuous temporal and spatial changes. Most techniques are rigid in adapting the acquisition parameters over time, as in confocal microscopy, where a laser beam is sequentially scanned at a predefined spatial sampling rate and pixel dwell time. Such lack of tunability forces a user to provide scan parameters, which may not be optimal, based on the best assumption before an acquisition starts. Here, we developed volumetric Lissajous confocal microscopy to achieve unsurpassed 3D scanning speed with a tunable sampling rate. The system combines an acoustic liquid lens for continuous axial focus translation with a resonant scanning mirror. Accordingly, the excitation beam follows a dynamic Lissajous trajectory enabling sub-millisecond acquisitions of image series containing 3D information at a sub-Nyquist sampling rate. By temporal accumulation and/or advanced interpolation algorithms, the volumetric imaging rate is selectable using a post-processing step at the desired spatiotemporal resolution for events of interest. We demonstrate multicolor and calcium imaging over volumes of tens of cubic microns with 3D acquisition speeds of 30 Hz and frame rates up to 5 kHz.

5.
Transl Oncol ; 13(4): 100760, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32247264

RESUMO

Although screening has reduced mortality rates for colorectal cancer (CRC), about 20% of patients still carry metastases at diagnosis. Postsurgery chemotherapy is toxic and induces drug resistance. Promising alternative strategies rely on repurposing drugs such as aspirin (ASA) and metformin (MET). Here, tumor spheroids were generated in suspension by primary CRCs and metastatic lymph nodes from 11 patients. These spheroids presented a heterogeneous cell population including a small core of CD133+/ESA+ cancer stem cells surrounded by a thick corona of CDX2+/CK20+ CRC cells, thus maintaining the molecular hallmarks of the tumor source. Spheroids were exposed to ASA and/or MET at different doses for up to 7 days to assess cell growth, migration, and adhesion in three-dimensional assays. While ASA at 5 mM was always sufficient to mitigate cell migration, the response to MET was patient specific. Only in MET-sensitive spheroids, the 5 mM ASA/MET combination showed an effect. Interestingly, CRCs from diabetic patients daily pretreated with MET gave a very low spheroid yield due to reduced cancer cell survival. This study highlights the potential of ASA/MET treatments to modulate CRC spreading.

6.
Biomaterials ; 200: 56-65, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30772759

RESUMO

A method to generate injectable macroporous hydrogels based on partitioning of polyethylene glycol (PEG) and high viscous polysaccharides is presented. Step growth polymerization of PEG was used to initiate a phase separation and the formation of a connected macroporous network with tunable dimensions. The possibilities and physical properties of this new category of materials were examined, and then applied to address some challenges in neural engineering. First, non-degradable macroporous gels were shown to support rapid neurite extension from encapsulated dorsal root ganglia (DRGs) with unprecedented long-term stability. Then, dissociated primary rat cortical neurons could be encapsulated with >95% viability, and extended neurites at the fast rate of ≈100 µm/day and formed synapses, resulting in functional, highly viable and long-term stable 3D neural networks in the synthetic extracellular matrix (ECM). Adhesion cues were found unnecessary provided the gels have optimal physical properties. Normal electrophysiological properties were confirmed on 3D cultured mouse hippocampal neurons. Finally, the macroporous gels supported axonal growth in a rat sciatic nerve injury model when used as a conduit filling. The combination of injectability, tunable pore size, stability, connectivity, transparency, cytocompatibility and biocompatibility, makes this new class of materials attractive for a wide range of applications.


Assuntos
Hidrogéis/química , Transição de Fase , Água/química , Animais , Células Cultivadas , Reagentes de Ligações Cruzadas/química , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Hipocampo/citologia , Ácido Hialurônico/farmacologia , Cinética , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/metabolismo , Regeneração Nervosa/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Polietilenoglicóis/química , Polissacarídeos/química , Porosidade , Ratos , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/fisiologia
7.
J Cell Sci ; 131(5)2018 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-29361543

RESUMO

Development of remote stimulation techniques for neuronal tissues represents a challenging goal. Among the potential methods, mechanical stimuli are the most promising vectors to convey information non-invasively into intact brain tissue. In this context, selective mechano-sensitization of neuronal circuits would pave the way to develop a new cell-type-specific stimulation approach. We report here, for the first time, the development and characterization of mechano-sensitized neuronal networks through the heterologous expression of an engineered bacterial large-conductance mechanosensitive ion channel (MscL). The neuronal functional expression of the MscL was validated through patch-clamp recordings upon application of calibrated suction pressures. Moreover, we verified the effective development of in-vitro neuronal networks expressing the engineered MscL in terms of cell survival, number of synaptic puncta and spontaneous network activity. The pure mechanosensitivity of the engineered MscL, with its wide genetic modification library, may represent a versatile tool to further develop a mechano-genetic approach.This article has an associated First Person interview with the first author of the paper.


Assuntos
Proteínas de Escherichia coli/genética , Canais Iônicos/genética , Mecanotransdução Celular/genética , Plasticidade Neuronal/genética , Neurônios/metabolismo , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Sobrevivência Celular/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/genética , Ativação do Canal Iônico/genética , Rede Nervosa/crescimento & desenvolvimento , Rede Nervosa/metabolismo , Técnicas de Patch-Clamp , Cultura Primária de Células , Engenharia de Proteínas/métodos , Ratos , Transfecção
8.
Biomater Sci ; 5(9): 1756-1765, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28643827

RESUMO

Degeneration of articular cartilage represents one of the most common causes of pain and disability in our aging society. Current treatments only address the symptoms of joint disease, but not their underlying causes which include oxidative stress and inflammation in cartilage and surrounding tissues. Sulfated biopolymers that mimic aspects of the native extracellular environment of cartilage are recently gaining interest as a means to slow the inflammatory events responsible for tissue degeneration. Here we show that the natural polysaccharide alginate and particularly its sulfated derivatives have potent anti-oxidant, anti-inflammatory and anti-immunogenic properties in vitro. We found that these polymers exert a free radical scavenging activity in a sulfation-dependent manner. In particular, the sulfation degree of substitution of alginate directly correlated with its ability to scavenge superoxide radicals and to chelate metal ions. We also studied the effect of sulfated alginate on the ability of IL-1ß to stimulate inflammatory genes in human chondrocytes and found decreased expression of the pro-inflammatory markers IL-6 and CXCL8, which inversely correlated with the sulfation degree. Moreover, in studies testing the ability of the alginates to modulate macrophage polarization, we found that they decreased both the gene expression and synthesis of the proinflammatory cytokine TNF-α in human THP-1 macrophages with M1-like phenotype in a sulfation-dependent manner. To conclude, sulfated alginates effectively protect against oxidative stress and inflammation in vitro and are a promising biomaterial to be explored for treatment of osteoarthritis.


Assuntos
Alginatos/química , Alginatos/farmacologia , Condrócitos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Sulfatos/química , Antioxidantes/química , Antioxidantes/farmacologia , Condrócitos/metabolismo , Ciclo-Oxigenase 2/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Ácido Glucurônico/química , Ácido Glucurônico/farmacologia , Ácidos Hexurônicos/química , Ácidos Hexurônicos/farmacologia , Humanos , Fatores Imunológicos/química , Fatores Imunológicos/farmacologia , Interleucina-1beta/farmacologia , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Macrófagos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fenótipo , Fator de Necrose Tumoral alfa/biossíntese
9.
ACS Appl Mater Interfaces ; 8(46): 31574-31586, 2016 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-27726370

RESUMO

Cellular responses are regulated by their microenvironments, and engineered synthetic scaffolds can offer control over different microenvironment properties. This important relationship can be used as a tool to manipulate cell fate and cell responses for different biomedical applications. We show for the first time in this study how blending of poly(ethylene oxide) (PEO) to poly(lactic-co-glycolic acid) (PLGA) fibers to yield hybrid scaffolds changes the physical and mechanical properties of PLGA fibrous scaffolds and in turn affects cellular response. For this purpose we employed electrospinning to create fibrous scaffolds mimicking the basic structural properties of the native extracellular matrix. We introduced PEO to PLGA electrospun fibers by spinning a blend of PLGA:PEO polymer solutions in different ratios. PEO served as a sacrificial component within the fibers upon hydration, leading to pore formation in the fibers, fiber twisting, increased scaffold disintegration, and hydrophilicity, decreased Young's modulus, and significantly improved strain at break of initially electrospun scaffolds. We observed that the blended PLGA:PEO fibrous scaffolds supported myoblast adhesion and proliferation and resulted in increased myotube formation and self-alignment, when compared to PLGA-only scaffolds, even though the scaffolds were randomly oriented. The 50:50 PLGA:PEO blended scaffold showed the most promising results in terms of mechanical properties, myotube formation, and alignment, suggesting an optimal microenvironment for myoblast differentiation from the PLGA:PEO blends tested. The explored approach for tuning fiber properties can easily extend to other polymeric scaffolds and provides a valuable tool to engineer fibrillar microenvironments for several biomedical applications.


Assuntos
Mioblastos , Diferenciação Celular , Óxido de Etileno , Ácido Láctico , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Engenharia Tecidual , Tecidos Suporte
10.
Molecules ; 21(8)2016 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-27527143

RESUMO

The technological advancement of optical approaches, and the growth of their applications in neuroscience, has allowed investigations of the physio-pathology of neural networks at a single cell level. Therefore, better understanding the role of single neurons in the onset and progression of neurodegenerative conditions has resulted in a strong demand for surgical tools operating with single cell resolution. Optical systems already provide subcellular resolution to monitor and manipulate living tissues, and thus allow understanding the potentiality of surgery actuated at single cell level. In the present work, we report an in vitro experimental model of minimally invasive surgery applied on neuronal cultures expressing a genetically encoded calcium sensor. The experimental protocol entails the continuous monitoring of the network activity before and after the ablation of a single neuron, to provide a robust evaluation of the induced changes in the network activity. We report that in subpopulations of about 1000 neurons, even the ablation of a single unit produces a reduction of the overall network activity. The reported protocol represents a simple and cost effective model to study the efficacy of single-cell surgery, and it could represent a test-bed to study surgical procedures circumventing the abrupt and complete tissue removal in pathological conditions.


Assuntos
Terapia a Laser/métodos , Rede Nervosa/cirurgia , Neurônios/citologia , Análise de Célula Única/métodos , Técnicas de Ablação/instrumentação , Técnicas de Ablação/métodos , Animais , Cálcio/metabolismo , Células Cultivadas , Terapia a Laser/instrumentação , Procedimentos Cirúrgicos Minimamente Invasivos , Modelos Biológicos , Rede Nervosa/patologia , Neurônios/metabolismo , Procedimentos Neurocirúrgicos , Ratos
11.
Front Neurosci ; 10: 101, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27013962

RESUMO

Current optical approaches are progressing far beyond the scope of monitoring the structure and function of living matter, and they are becoming widely recognized as extremely precise, minimally-invasive, contact-free handling tools. Laser manipulation of living tissues, single cells, or even single-molecules is becoming a well-established methodology, thus founding the onset of new experimental paradigms and research fields. Indeed, a tightly focused pulsed laser source permits complex tasks such as developing engineered bioscaffolds, applying calibrated forces, transfecting, stimulating, or even ablating single cells with subcellular precision, and operating intracellular surgical protocols at the level of single organelles. In the present review, we report the state of the art of laser manipulation in neuroscience, to inspire future applications of light-assisted tools in nano-neurosurgery.

12.
Tissue Eng Part A ; 21(15-16): 2177-85, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25915796

RESUMO

Neuron development and function are exquisitely sensitive to the mechanical properties of their surroundings. Three-dimensional (3D) cultures are therefore being explored as they better mimic the features of the native extracellular matrix. Limitations of existing 3D culture models include poorly defined composition, rapid degradation, and suboptimal biocompatibility. Here we show that ionically cross-linked ultrasoft hydrogels made from unmodified alginate can potently promote neuritogenesis. Alginate hydrogels were characterized mechanically and a remarkable range of stiffness (10-4000 Pa) could be produced by varying the macromer content (0.1-0.4% w/v) and CaCl2 concentration. Dissociated rat embryonic cortical neurons encapsulated within the softest of the hydrogels (0.1% w/v, 10 mM CaCl2) showed excellent viability, extensive formation of axons and dendrites, and long-term activity as determined by calcium imaging. In conclusion, alginate is an off-the-shelf, easy to handle, and inexpensive material, which can be used to make ultrasoft hydrogels for the formation of stable and functional 3D neuronal networks. This 3D culture system could have important applications in neuropharmacology, toxicology, and regenerative medicine.


Assuntos
Alginatos/química , Técnicas de Cultura de Células/métodos , Hidrogéis/química , Rede Nervosa/metabolismo , Neuritos/metabolismo , Animais , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Rede Nervosa/citologia , Ratos , Ratos Wistar
13.
Tissue Eng Part A ; 20(9-10): 1454-64, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24320935

RESUMO

The loss of expression of chondrogenic markers during monolayer expansion remains a stumbling block for cell-based treatment of cartilage lesions. Here, we introduce sulfated alginate hydrogels as a cartilage biomimetic biomaterial that induces cell proliferation while maintaining the chondrogenic phenotype of encapsulated chondrocytes. Hydroxyl groups of alginate were converted to sulfates by incubation with sulfur trioxide-pyridine complex (SO3/pyridine), yielding a sulfated material cross-linkable with calcium chloride. Passage 3 bovine chondrocytes were encapsulated in alginate and alginate sulfate hydrogels for up to 35 days. Cell proliferation was five-fold higher in alginate sulfate compared with alginate (p=0.038). Blocking beta1 integrins in chondrocytes within alginate sulfate hydrogels significantly inhibited proliferation (p=0.002). Sulfated alginate increased the RhoA activity of chondrocytes compared with unmodified alginate, an increase that was blocked by ß1 blocking antibodies (p=0.017). Expression and synthesis of type II collagen, type I collagen, and proteoglycan was not significantly affected by the encapsulation material evidenced by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and immunohistochemistry. Alginate sulfate constructs showed an opaque appearance in culture, whereas the unmodified alginate samples remained translucent. In conclusion, alginate sulfate provides a three dimensional microenvironment that promotes both chondrocyte proliferation and maintenance of the chondrogenic phenotype and represents an important advance for chondrocyte-based cartilage repair therapies providing a material in which cell expansion can be done in situ.


Assuntos
Alginatos/química , Cartilagem Articular/citologia , Cartilagem Articular/crescimento & desenvolvimento , Condrócitos/citologia , Condrócitos/fisiologia , Condrogênese/fisiologia , Proteínas da Matriz Extracelular/metabolismo , Animais , Técnicas de Cultura Celular por Lotes/instrumentação , Técnicas de Cultura Celular por Lotes/métodos , Materiais Biomiméticos/síntese química , Bovinos , Diferenciação Celular , Proliferação de Células/fisiologia , Células Cultivadas , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Sulfatos/química , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos , Tecidos Suporte
14.
PLoS One ; 7(11): e49979, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23209630

RESUMO

BACKGROUND: Neurite formation and synaptic patterning are fundamental to the development of a functional nervous system. Flavonoids are natural molecules known for having beneficial effects on brain health through diverse molecular pathways. Cytoskeletal changes occurring during neuritogenesis and synapse formation often involve Rho GTPases. Here we hypothesized that the flavonoid isoquercitrin promotes neuronal differentiation through Rho signalling. METHODOLOGY/PRINCIPAL FINDINGS: We performed time lapse imaging of NG108-15 cells during incubation with/without isoquercitrin. Isoquercitrin stimulated extensive neurites enriched in the synaptic vesicle protein synaptotagmin-1. Neurite extension was augmented by the ROCK inhibitor Y-27632 suggesting an inactivation of RhoA/Rho kinase as the mechanism. To test this, we first measured the dose-dependent effect of isoquercitrin on RhoA activity and found a 47% reduction in RhoA activity at concentrations which induced neurites (≥40 µM). Secondly, we tested the ability of isoquercitrin to rescue the neural phenotype in a model of RhoA-induced neurite retraction and found that 40 µM isoquercitrin added to cultures previously treated with the RhoA activator calpeptin produced significantly more neurite length/cell than calpeptin alone. Finally, we tested the hypothesis that isoquercitrin may affect RhoA localization preventing the translocation to the plasma membrane. Unexpectedly, immunolocalization studies showed that RhoA was present in nuclear compartments of control NG108-cells, but underwent translocation to the cytoplasm upon treatment with isoquercitrin. DNA microarrays and reverse transcription - quantitative PCR (RT-qPCR) revealed differences in global gene expression of Rho GTPase family members. These data taken together indicate that isoquercitrin is a potential stimulator of neuronal differentiation, through multiple Rho GTPase mediated mechanisms. CONCLUSIONS/SIGNIFICANCE: As several members of the Rho GTPase family are implicated in human neurological disorders/injuries, our results suggest that isoquercitrin could be used in the treatment of these pathological states through its effect on this family of molecular switches.


Assuntos
Neuritos/efeitos dos fármacos , Neuritos/metabolismo , Quercetina/análogos & derivados , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fenótipo , Transporte Proteico , Quercetina/farmacologia , Ratos , Sinaptotagmina I/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
15.
Anticancer Res ; 32(3): 847-60, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22399603

RESUMO

BACKGROUND/AIM: The phenomenon of membrane vesicle-release by neoplastic cells is a growing field of interest in cancer research, due to their potential role in carrying a large array of tumor antigens when secreted into the extracellular medium. In particular, experimental evidence show that at least some of the tumor markers detected in the blood circulation of mammary carcinoma patients are carried by membrane-bound vesicles. Thus, biomarker research in breast cancer can gain great benefits from vesicle characterization. MATERIALS AND METHODS: Conditioned medium was collected from serum starved MDA-MB-231 sub-confluent cell cultures and exosome-like vesicles (ELVs) were isolated by ultracentrifugation. Ultrastructural analysis of ELVs was performed by transmission electron microscopy (TEM) and the purity of fraction was confirmed by western blotting assays. Proteomic profile of ELVs was carried out by 2 D-PAGE and protein identification performed by MALDI-ToF Mass Spectrometry. RESULTS: On the basis of ultrastructural and immunological characterization, the isolated vesicles have been classified as exosome-like vesicles (ELVs). The proteomic investigation showed a distinctive protein profile of the ELVs, in comparison to the whole cell lisates (WCL) proteome, which could be instrumental for cancer progression. The proteins were clustered into functional categories, according to the current bioinformatics resources and a Venn diagram was constructed based on these clusters. CONCLUSION: It is reasonable to assume that vesicle production allows neoplastic cells to exert different effects, according to the possible acceptor targets. For instance, vesicles could potentiate the malignant properties of adjacent neoplastic cells or activate non-tumoral cells. Moreover, vesicles could convey signals to immune cells and surrounding stroma cells. The present study may significantly contribute to the knowledge of the vesiculation phenomenon, which is a critical device for trans cellular communication in cancer.


Assuntos
Neoplasias da Mama/metabolismo , Exossomos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteômica , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Cromatografia Líquida , Meios de Cultura Livres de Soro , Feminino , Humanos , Microscopia Eletrônica de Transmissão , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...